Twisted-Spike Floating Weeder

Technical drawings

Prepared by Godfrey Mwinama, Centre for Agricultural Mechanization and Rural Technology (CAMARTEC), Arusha, Tanzania

Edited and convened by Jonne Rodenburg, Africa Rice Center (AfricaRice), Dar es Salaam, Tanzania
Figure 1A: Pictorial view of the Twisted-Spike Floating Weeder assembly
Figure 2B: Technical drawing of the Twisted-Spike Floating Weeder assembly
Figure 3: Positioning of important parts of the Twisted-Spike Floating Weeder
Figure 4A: Pictorial view of the left side frame of the Twisted-Spike Floating Weeder
Figure 5B: Technical drawing of the left side frame of the Twisted-Spike Floating Weeder
Figure 6A: Pictorial view of the right side frame of Twisted-Spike Floating Weeder
Figure 7B: Technical drawing of the right side frame of Twisted-Spike Floating Weeder
Figure 8A: Pictorial view of the handle supporter
Figure 9B: Technical drawing of the handle supporter

NB: Handle supporter is made by 30 mm x 3 mm mild steel flat bar which is drilled to appropriate hole sizes and bent to the desired shape.
Figure 10A: Pictorial view of the front end frame
Figure 11B: Technical drawing of the front end frame

NB: 30 mm x 3 mm mild steel sheet is cut to size and bent to shape to form Front end frame
Figure 12A: Pictorial view of the rear end frame
Figure 13B: Technical drawing of the rear end frame

NB: Rear end frame is made of 30 mm x 3 mm flat bar drilled to correct hole sizes and bent into shape.
Figure 14A: Pictorial view of the handle
Figure 15B: Technical drawing of the handle
Figure 16A: Pictorial view of the floater
Figure 17B: Technical drawing of the floater

1.5 mild steel sheet is cut and bent into desired shapes and then welded to form a floater.

30 mm x 3 mm mild steel flat bar

1.5 mm thick mild steel sheet

Top view

Front view

Side view

Perspective view
Figure 18A: Pictorial view of the tilling blade
Figure 19B: Technical drawing of the tilling blade

Tilling blade ends are formed by twisting end points of a suitably cut shape of a mild steel sheet at 90 degrees by a plier, pipe wrench or any suitable device.
Figure 20A: Pictorial view of the front blade gang
Figure 21B: Technical drawing of the front blade gang
Figure 22A: Pictorial view of the rear blade gang
Figure 23B: Technical drawing of the rear blade gang

NB: Twelve toothed tilling blades can be replaced with eight toothed tilling blades in for the rear blade gang.

Rear blade gang is obtained by welding of tilling blades to the tilling blade shafts at specified distances, positions and directions.